Recognition Algorithm for Mildly Context-Sensitive Languages
نویسنده
چکیده
Vijay-Shanker and Weir have shown in 19] that Tree Adjoining Grammars and Combinatory Categorial Grammars can be transformed into equivalent Linear Indexed Grammars (LIGs) which can be recognized in O(n 6) time using a Cocke-Kasami-Younger style algorithm. This paper exhibits another recognition algorithm for LIGs, with the same upper-bound complexity, but whose average case behaves much better. This algorithm works in two steps: rst a general context-free parsing algorithm (using the underlying context-free grammar) builds a shared parse forest, and second, the LIG properties are checked on this forest. This check is based upon the composition of simple relations and does not require any computation of symbol stacks. Un autre algorithme de reconnaissance en O(n 6) pour les langages mod er ement contextuels R esum e : Vijay-Shanker et Weir ont montr e dans 19] que les Grammaires d'Arbres Adjoints et les Grammaires Cat egorielles Combinatoires peuvent ^ etre transform ees en Grammaires Index ees Lin eaires (LIG) equivalentes qui peuvent ^ etre reconnues en temps O(n 6) en utilisant un algorithme a la Cocke-Kasami-Younger. Cet article propose un autre algorithme de reconnaissance pour les LIG, ayant la m^ eme complexit e maximale, mais dont le comportement moyen est bien meilleur. Cet algorithme travaille en deux etapes : tout d'abord un analyseur non contextuel g en eral (qui utilise la grammaire non contextuelle sous-jacente) construit une for^ et d'analyse partag ee sur laquelle, dans une deuxi eme phase, les propri etes des LIG sont v erii ees. Cette v eriication repose sur la composition de relations simples et ne n ecessite aucun calcul de piles de symboles. Mots-cl e : analyse contextuelle, ambigu t e, arbre d'analyse, for^ et d'analyse partag ee.
منابع مشابه
Computational properties of Unification Grammars
There is currently considerable interest among computational linguists in grammatical formalisms with highly restricted generative power. This is based on the argument that a grammar formalism should not merely be viewed as a notation, but as part of the linguistic theory. It is now generally accepted that CFGs lack the generative power needed for this purpose. Unification grammars have the abi...
متن کاملA Polynomial Time Algorithm for Inferring Grammars for Mildly Context Sensitive Languages
Natural languages are largely context-sensitive, yet context-sensitive grammars cannot be identified in the limit from positive examples [Gold, 1967]. Mildly context-sensitive languages are able to express the most common context-sensitive structures found in natural language. We restrict our view to a class of mildly context-sensitive languages which can be described by simple external context...
متن کاملPolynomial Pregroup Grammars parse Context Sensitive Languages
Pregroup grammars with a possibly infinite number of lexical entries are polynomial if the length of type assignments for sentences is a polynomial in the number of words. Polynomial pregroup grammars are shown to generate the standard mildly context sensitive formal languages as well as some context sensitive natural language fragments of Dutch, SwissGerman or Old Georgian. A polynomial recogn...
متن کاملInferring Grammars for Mildly Context Sensitive Languages in Polynomial-Time
Natural languages contain regular, context-free, and contextsensitive syntactic constructions, yet none of these classes of formal languages can be identified in the limit from positive examples. Mildly context-sensitive languages are able to represent some context-sensitive constructions, those most common in natural languages, such as multiple agreement, crossed agreement, and duplication. Th...
متن کاملStochastic Finite Learning of Some Mildly Context-Sensitive Languages
In recent years different classes of mildly context-sensitive languages, which can handle complex structures beyond context-freeness, have been discovered that can be identified in the limit from positive examples efficiently in some sense. The goal of this paper is to convert those existing learning algorithms into ones that work under a more practical learning scheme, finite stochastic learni...
متن کاملMildly Context-Sensitive Languages via Buffer Augmented Pregroup Grammars
A family of languages is called mildly context-sensitive if – it includes the family of all -free context-free languages; – it contains the languages • {anbncn : n ≥ 1} – multiple agreement, • {ambncmdn : m,n ≥ 1} – crossed dependencies, and • {ww : w ∈ Σ+} – reduplication; – all its languages are semi-linear; and – their membership problem is decidable in polynomial time. In our paper we intro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995